Papers

Basic information

Name OZAWA Hitoshi

Title

Characterisation of Kiss1r (Gpr54)-Expressing Neurones in the Arcuate Nucleus of the Female Rat Hypothalamus

Author

S. Higo,N. Iijima,H. Ozawa

Sole or Joint Author

 

Journal

Journal of Neuroendocrinology

Publisher

Blackwell Publishing Ltd

All Volumes

 

All Pages

 

Volume

29

Number

2

Starting Page

 

Ending Page

 

Publication Date

2017-02

Referee Paper

Refereed

Invited Paper

Not invited

Language

English

MISC Class

 

Publishing Type

Research paper (scientific journal)

ISSN

 

ID:DOI

10.1111/jne.12452

ID:NAID

 

ID:PMID

 

URL

Description

Kisspeptin is essential in reproduction and acts by stimulating neurones expressing gonadotrophin-releasing hormone (GnRH). Recent studies suggest that kisspeptin has multiple roles in the modulation of neuronal circuits in systems outside the hypothalamic-pituitary-gonadal axis. Our recent research using in situ hybridisation (ISH) clarified the histological distribution of Kiss1r (Gpr54)-expressing neurones in the rat brain that were presumed to be putative targets of kisspeptin. The arcuate nucleus (ARN) of the hypothalamus is one of the brain regions in which Kiss1r expression in non-GnRH neurones is prominent. However, the characteristics of Kiss1r-expressing neurones in the ARN remain unclear. The present study aimed to determine the neurochemical characteristics of Kiss1r-expressing neurones in the ARN using ISH and immunofluorescence. We revealed that the majority (approximately 63%) of Kiss1r-expressing neurones in the ARN were pro-opiomelanocortin (POMC) neurones, which have an anorexic effect in mammals. Additionally, a few Kiss1r-expressing neurones in the dorsal ARN are tuberoinfundibular dopamine (TIDA) neurones, which control milk production by inhibiting prolactin secretion from the anterior pituitary. TIDA neurones showed a relatively weak Kiss1r ISH signal compared to POMC neurones, as well as low co-expression of Kiss1r (approximately 15%). We also examined the expression of Kiss1r in neuropeptide Y and kisspeptin neurones, which are reported to arise from POMC-expressing progenitor cells during development. However, the vast majority of neuropeptide Y and kisspeptin neurones in the ARN did not express Kiss1r. These results suggest that kisspeptin may directly regulate energy homeostasis and milk production by modulating the activity of POMC and TIDA neurones, respectively. Our results provide an insight into the wide variety of roles that kisspeptin plays in homeostatic and neuroendocrine functions.

ID:JGlobalID

 

arXiv ID

 

Put Code of ORCID

 

DBLP ID

 

WekoID of OpenDepo