|
Neonatal Estrogen Causes Irreversible Male Infertility via Specific Suppressive Action on Hypothalamic Kiss1 Neurons.
Aberrant exposure to estrogen-like compounds during the critical developmental period may cause improper hypothalamic programming, thus resulting in reproductive dysfunction in adulthood in male mammals. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) have been suggested to govern tonic GnRH/gonadotropin release to control reproduction in male mammals. In this study, we report that chronic exposure to supraphysiological levels of estrogen during the neonatal period caused an irreversible suppression of KNDy genes in the ARC, resulting in reproductive dysfunction in male rats. Daily estradiol benzoate (EB) administration from days 0 to 10 postpartum caused smaller seminiferous tubules, abnormal spermatogenesis, and a decrease in plasma testosterone in adult male rats. The neonatal EB treatment profoundly suppressed LH pulse and ARC KNDy gene expression at adulthood, but it failed to affect the number of GnRH gene-expressing cells in male rats. The EB treatment failed to affect gene expression of other neuropeptides, such as GHRH, proopiomelanocortin, and agouti-related protein in the ARC, suggesting that ARC KNDy neurons would be a specific target of neonatal estrogen to cause male reproductive dysfunction. Because LH secretory responses to kisspeptin challenge and GnRH expression were spared in male rats with the EB treatment, LH pulse suppression is most probably due to ARC KNDy deficiency. Taken together, the current study indicates that chronic exposure to estrogenic chemicals in the developing brain causes a defect of ARC KNDy neurons, resulting in an inhibition of pulsatile GnRH/LH release and the failure of spermatogenesis and steroidogenesis. |